
My Problem: Portfolio Selection

Modern finance treats financial assets as being identified by measurable
characteristic sets.

Size
Book-to-Market Ratio
Recent price behavior

Although it has the same name and ticker symbol, AT&T stock in 2025 is a very
different investment from AT&T stock in 1960.

Use the set of measurable characteristics to characterize multivariate return density
(e.g., rather than / in addition to historical mean and variance).

Question: Do the characteristics—measurable at time t—contain information for
beating the market?



Brandt, Santa-Clara, Valkanov (2009)

Develop a brilliant algorithm to translate this perspective into optimal portfolio
construction.

Maximize average utility of monthly returns in-sample over a small set of parameters
tilt portfolio weights away from value-weighting at time t as function of characteristics
at t − 1.
Start with value-weighted (market) portfolio, augment with 1 ”tilt” parameter (θj) for
every characteristic, j = 1, . . . ,K .
Since this algorithm does not work with the underlying dgp hope is that it solves the
well-known problem of overfitting—estimation risk that plagues in-sample optimization.
For example, traditional Markowitz, Mean-Variance portfolio selection.
It is more general than the Mean-Variance approach as higher-order moments of the
return distribution affect general CRRA utility.



Lamoureux and Zhang (2024)

Examine overfitting in this setting:

estimation risk lives in portfolio variance.
A relatively risk averse investor’s optimal portfolio does not exhibit overfitting (e.g.,
Power Utility with RRA coefficient ≥ 6).
But it is penurious for more risk-tolerant investors (e.g., log utility, Power Utility with
RRA < 4).

We address in a way common in Machine Learning: Bootstrap to construct sampling
distributions and out-of-sample validation.

We select optimal characteristic set and tuning parameter using Max-Min.

We use the curvature of the loss function brought to the data as a tuning parameter:
An power utility investor with CRRA = 2 should use a CRRA = 3 in-sample to
mitigate estimation risk.

Find that the gains from the characteristic-based strategy vanish in the 21st Century.



Current Project

I start with several things I don’t like about my 2024 paper:

Approach violates the Likelihood Principal. (Data I might have seen but did not
matters to my decision.)
It is not a coherent decision rule for several reasons. (Bernardo and Smith, 2000)
Out-of-sample validation destroys immediacy – very costly in a changing environment.
The bootstrap requires certain properties of the dgp, which is undesirable since we
want to be agnostic in this regard.
I know my utility function–why am I using Max-Min? I want to integrate signal
extraction and portfolio selection. The distinction between ambiguity aversion and my
utility function is artificial.



Generalized Bayesian Inference: Gibbs Posteriors

Form prior on what I don’t know: π(θ). π(θ) ∼ N (0, 1).

Gibbs Posterior: Pλ(θ|data) ∼ exp (λ · U(θ,data))π(θ).

Since exp(U) is not a density, λ scales it to the prior; λ is weight on data relative to
prior.
Minimizes Kullback-Liebler distance to prior (coherence).

Implementation: I use a Random Walk Metropolis-Hastings within Gibbs algorithm
to generate the Gibbs posterior.

Numerically intensive
Proposal density: Stable Paretian
Excellent convergence properties
More numerically robust than optimization (esp. for log utility)



λ

Intuition:

Low values of λ relative to prior’s scale will result in Gibbs posterior that looks like the
prior.
Very high values of λ relative to prior’s scale will result in Gibbs posterior that looks
like optimizing Utility in sample.

Rather than use out-of-sample validation to choose λ∗, evaluate the effects of λ on
the Gibbs posterior variance-covariance matrix. As λ increases:

Tightens precision: log-det decreases
Increases sensitivity to noise: Condition Number increases (ratio of largest eigenvalue
to smallest)



λ∗: Inflection Point
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Second derivative of -log-det as function of Condition Number
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I use the KNEEDLE method to select λ* in-sample for each model, utillity function, 
protocol, and period.
This is from the 240 months starting January 1977, ending December 1996.  Log Utility.

As λ increases and we move from the prior to the data we get more precision--reflected 
by a decreasing log-det and more susceptibility to noise--reflected by a higher condition 
number of the Gibbs posterior variance-covariance matrix.

λ=10,000
λ=15,000 λ=100,000



λ∗

Generally decreasing in risk aversion.

For log utility tends to decrease in time.

Example: log utility: λ∗ drops over 18% in 20th Century and another 45% by 2015.

But it’s still not enough. As in Lamoureux and Zhang, better off with market
portfolio in this century.

Confronted with the portfolio decision: Use the posterior Eλ∗(θ|data) rolling
annually.

Monthly Certainty Equivalent Returns
Period Opt. Portfolio VWI EWI

1980–2000 6.07% 1.27% 1.29%
2001–2024 0.20% 0.68% 0.84%



Gibbs posteriors on (θ|λ∗)
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Gibbs posteriors on (θ|λ∗)
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