

My Problem: Portfolio Selection

- Modern finance treats financial assets as being identified by measurable characteristic sets.
 - Size
 - Book-to-Market Ratio
 - Recent price behavior
- Although it has the same name and ticker symbol, AT&T stock in 2025 is a very different investment from AT&T stock in 1960.
- Use the set of measurable characteristics to characterize multivariate return density (e.g., rather than / in addition to historical mean and variance).
- **Question:** Do the characteristics—measurable at time t —contain information for *beating the market?*

- Develop a brilliant algorithm to translate this perspective into optimal portfolio construction.
 - Maximize average utility of monthly returns in-sample over a small set of parameters tilt portfolio weights away from value-weighting at time t as function of characteristics at $t - 1$.
 - Start with value-weighted (market) portfolio, augment with 1 "tilt" parameter (θ_j) for every characteristic, $j = 1, \dots, K$.
 - Since this algorithm does not work with the underlying dgp hope is that it solves the well-known problem of overfitting—estimation risk that plagues in-sample optimization. For example, traditional Markowitz, Mean-Variance portfolio selection.
 - It is more general than the Mean-Variance approach as higher-order moments of the return distribution affect general CRRA utility.

- Examine overfitting in this setting:
 - estimation risk lives in portfolio variance.
 - A relatively risk averse investor's optimal portfolio does not exhibit overfitting (e.g., Power Utility with RRA coefficient ≥ 6).
 - But it is penurious for more risk-tolerant investors (e.g., log utility, Power Utility with RRA < 4).
- We address in a way common in Machine Learning: Bootstrap to construct sampling distributions and out-of-sample validation.
- We select optimal characteristic set and tuning parameter using Max-Min.
- We use the curvature of the loss function brought to the data as a tuning parameter: An power utility investor with CRRA = 2 should use a CRRA = 3 *in-sample* to mitigate estimation risk.
- Find that the gains from the characteristic-based strategy vanish in the 21st Century.

Current Project

- I start with several things I don't like about my 2024 paper:
 - Approach violates the Likelihood Principal. (Data I might have seen but did not matter to my decision.)
 - It is not a coherent decision rule for several reasons. (Bernardo and Smith, 2000)
 - Out-of-sample validation destroys immediacy – very costly in a changing environment.
 - The bootstrap requires certain properties of the dgp, which is undesirable since we want to be agnostic in this regard.
 - I know my utility function—why am I using Max-Min? I want to integrate signal extraction and portfolio selection. The distinction between ambiguity aversion and my utility function is artificial.

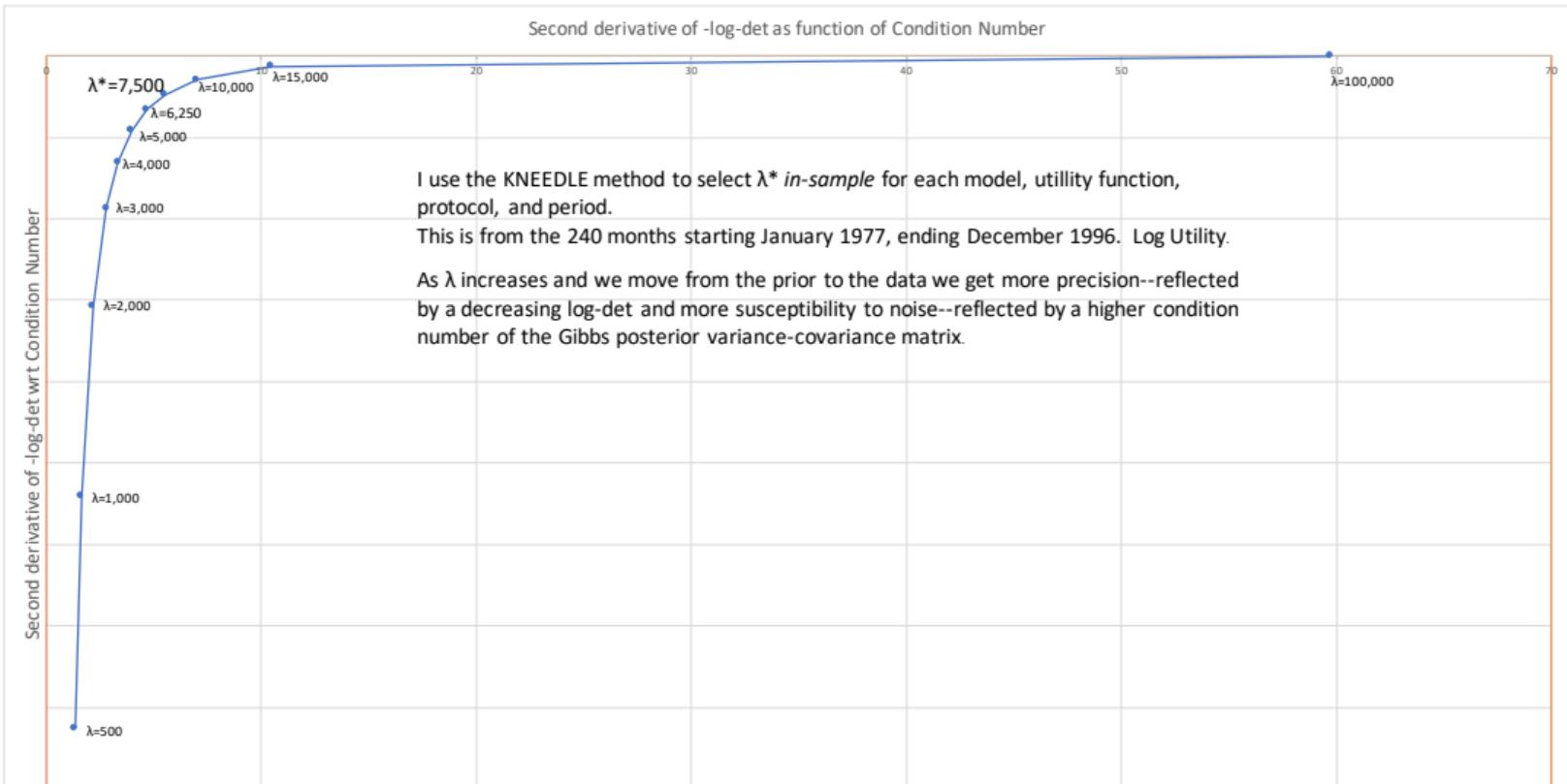
Generalized Bayesian Inference: Gibbs Posteriors

- Form prior on what I don't know: $\pi(\theta)$. $\pi(\theta) \sim \mathcal{N}(0, 1)$.
- Gibbs Posterior: $P_\lambda(\theta|\text{data}) \sim \exp(\lambda \cdot U(\theta, \text{data})) \pi(\theta)$.
 - Since $\exp(U)$ is not a density, λ scales it to the prior; λ is weight on data relative to prior.
 - Minimizes Kullback-Liebler distance to prior (coherence).
- Implementation: I use a Random Walk Metropolis-Hastings within Gibbs algorithm to generate the Gibbs posterior.
 - Numerically intensive
 - Proposal density: Stable Paretian
 - Excellent convergence properties
 - More numerically robust than optimization (esp. for log utility)

$$\lambda$$

- Intuition:
 - Low values of λ relative to prior's scale will result in Gibbs posterior that looks like the prior.
 - Very high values of λ relative to prior's scale will result in Gibbs posterior that looks like optimizing Utility in sample.
- Rather than use out-of-sample validation to choose λ^* , evaluate the effects of λ on the Gibbs posterior variance-covariance matrix. As λ increases:
 - Tightens precision: log-det decreases
 - Increases sensitivity to noise: Condition Number increases (ratio of largest eigenvalue to smallest)

λ^* : Inflection Point

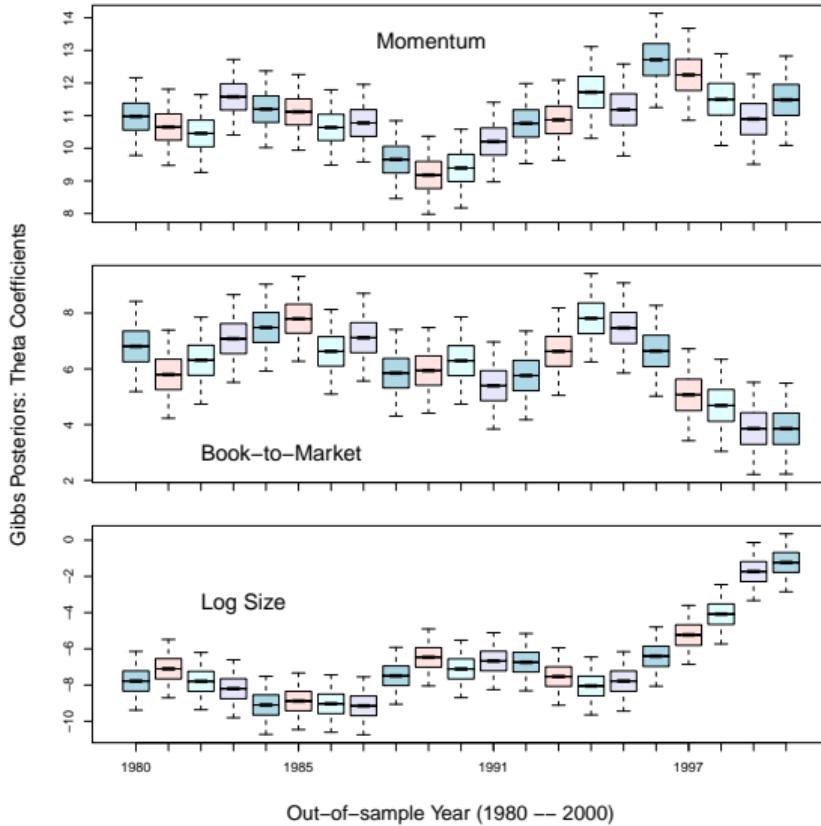


$$\lambda^*$$

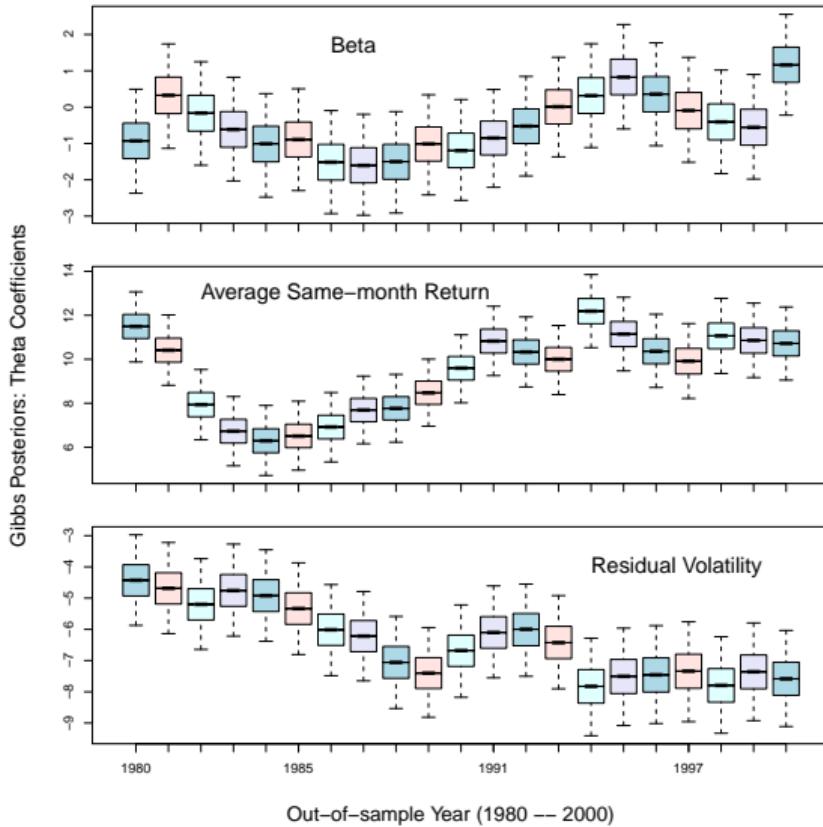
- Generally decreasing in risk aversion.
- For log utility tends to decrease in time.
- Example: log utility: λ^* drops over 18% in 20th Century and another 45% by 2015.
- But it's still not enough. As in Lamoureux and Zhang, better off with market portfolio in this century.
- Confronted with the portfolio decision: Use the posterior $E_{\lambda^*}(\theta|\text{data})$ rolling annually.

Monthly Certainty Equivalent Returns				
Period	Opt. Portfolio	VWI	EWI	
1980–2000	6.07%	1.27%	1.29%	
2001–2024	0.20%	0.68%	0.84%	

Gibbs posteriors on $(\theta|\lambda^*)$



Gibbs posteriors on $(\theta|\lambda^*)$



Key references on Generalized Bayesian Inference and Gibbs Posteriors

- Bissiri, P.G., C.C. Holmes, and S.G. Walker, 2016, A general framework for updating belief distributions, *Journal of the Royal Statistical Society Series B*, **78**, 1103–1130.
- Zhang, T, 2006, From ϵ -entropy to KL-entropy: Analysis of minimum information complexity density estimation, *Annals of Statistics*, **34**, 2180–2210.
- Zhang, T, 2006, Information theoretical upper and lower bounds for statistical estimation, *IEEE Transactions on Information Theory*, **52**, 1307–1321.